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ABSTRACT 

 

 
Consider a “real” (i.e. not artificially gedanken) quantum mechanical clock in the rest frame of 

reference. This can be a molecular, or an atomic, or a nuclear entity, of “characteristic mass” M0, 

doing a regular “clock labour”, in a space of “size” R0, throughout a “unit period time” T0. In our 

previous work, we established that, in a “real” wave-like description, if the “characteristic mass” M0 

of the object is multiplied by the arbitrary number  , then the size of space R0, in which this object is 

installed, shrinks as much, and the total energy E0 of the object, is increased as much.  

 

This occurrence (were the object in consideration indeed, “real”), yields at once the “quantum 

mechanical invariance” of the quantity 2

000ME R , through either relativistic or non-relativistic 

quantum mechanical description, whichever is appropriate for the case in hand; interestingly, the 

quantity 2

000ME R  happens to be Lorentz invariant, and strapped to h
2
. Note that primarily, what we do 

is not a “dimension analysis”. Anyhow, the invariance of 2

000ME R  in regards to an overall mass 

change, would not work, if the wave-like object in hand is not “real”, though of course, there still 

would be no problem in regards to a dimension analysis.  

 
Herein, we consider the cast 22

000 h~ME R  we establish, along the Born&Oppenheimer 

Approximation, applied to the Schrodinger description of a diatomic molecule. This yields a 

fundamental relationship, i.e.  T0 ~ (1/h) 
e0 mgM 2

0R , where 
0M  is the reduced mass of the nuclei,  

me the mass of the electron, and g a dimensionless and relativistically invariant coefficient; we 

elaborate on the proportionality constant in question, to arrive at the somewhat rigorous relationship                              

T0 = [ 24 /(
21nn h)]

e0 mgM 2

0R , 
1n and 

2n  being principal quantum numbers to be associated with 

the electrons making up the bond(s) of the diatomic molecule in hand, though due to quantum defects, 

they are not integer numbers.  

 

It appears immediately that g, purely related to the electronic bond structure of the molecule, should 

remain practically constant, for chemically alike bonds. This allows us to draw the architectural layout 

of diatomic molecules, since the above relationship reduces to an even simpler one, i.e. T0 ~ 
0M 2

0R  

for a family of chemicaly alike molecules, and to T0 ~ 2

0R , for different electronic states of a given 

molecule; this latter is an approximate relationship known since 1925, but never disclosed so far.      

   

The setting of the proportionality constant, and paticularly the quantum numbers embodied by the 

above relationships, requires an elaboration; this, on the basis of H2 molecule, shall constitute the topic 

of Part II of this work, thus essentially yielding a calibration of the composite quantum number 
21nn , as 

well as the identification of the seemingly ambiguous data; 
21nn  turns out to be R /R0, R  being the 

characteristic length at the given excited state, and R0 the characteristic length of the ground state, 

provided that the two states are configured similarly. We should further expect this finding to hold for 

members of a given chemical family, where R becomes say, the internuclear distance of a heavier 

member, and R0 the internuclear distance of the lightest member, given that the heavier member can be 

considered to be electronically configured just like the corresponding excited state of the lightest 

member. 

 

Various applications, in excellent agreement with our finding are presented. Our approach can be easily 

extenden to polyatomic molecules.  
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INTRODUCTION 
 

This work is issued from a totally different perspective than the one considered 

herein.
1, 2, 3, 4, 5, 6, 7,8 

 We have to emphasize that without our original idea, it would be 

practically impossible that we could discover the approach we are going to present 

herein, and reproduce our results, now based on a rigorous quantum mechanical 

derivation. 

 

Thus, it was the author’s original idea that in order to insure the validity of the theory 

of relativity in regards to any entity existing in nature, the matter architecture and the 

internal dynamics this displays, ought to be made in just a given manner.  

 

In effect a natural entity, has got an internal dynamics, thus it works as a clock; this 

bears a clock period, T0; the mechanism in question involves a “characteristic mass” 

M0, which we call the “clock mass”, and is installed in a space of size R0.
3
 

 

The “clock mass” is a concept we would like to introduce, to represent the 

“compound mass” doing the “clock labour” of the wave-like object in hand. One 

may define different clock masses for the same object in regards to different motions 

this displays. The clock mass within the frame of the hydrogen atom’s Schrödinger 

description is the reduced mass of the proton and the electron. The clock mass turns 

out to be the reduced mass M0 of the atoms regarding the rotational motion of a 

diatomic molecule. In this context, the clock mass is the mass one comes out with, 

when he can reduce the Schrödinger description of a many-body wave-like object, to 

a one-body wave-like object. In the case of the vibrational motion of a diatomic 

molecule, the clock mass of the vibrational motion can be formulated as me              

(M0 / me)
1/2 

(based on the electron mass me), etc.
3  

 

Anyway the clock mass does not seem to be an obvious mass, unless the motion of 

concern is simple. We shall denote throughout, the clock mass by M0.  

 

Our key idea yielding (through a totally different way, than the one presented herein) 

our original results, is as follows.  

 

The Lorenzt tranformations on T0, M0 and R 0, were the wave-like object in hand 

brought to a uniform translational motion, or similarly, the transformations that these 

quantities would undergo, were the object planted into a gravitational field, can only 

hold, if the intrinsic relationship (drawn by quantum mechanics) between T0, M0 and 

R0, bears the form [T0 ~ M0
2

0R ].
1, 2, 3, 4, 5, 6  

 

We have to emphasize that the Lorentz invariant cast T0 ~ M0
2

0R , thus happens to be 

immediate requirement of the constancy of the speed of light in regards to all inertial 

frames of reference. 

 

This cast turns out to be T0  ~ 
e0mgM 2

0R  for diatomic molecules, in fact for any 

molecule, T0 being the molecule’s vibrational period, associated with the bond we 

would take in consideration, M0  the nuclei reduced mass, me the electron’s mass, R0 

the bond length, and g a dimensionless and relativistically invariant coefficient. 
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On the other hand, the proportionality constant depicted by 0T  ~ 
e0 mgM 2

0R  is, as 

we shall  disclose, basically made of 1/h. We say “basically”, because, there is also a 

“geometry factor”, as well as  “quantum numbers” coming into play. 

  

This was our finding, rooted to the special theory of relativity, which in fact gave 

birth to all of the results that we shall rederive in the present work through a 

straightforward approach, now based on only quantum mechanics. 

 

We will limit ourselves first to atomic, chiefly molecular wave-like bodies. More 

specifically, we are going to focus primarily on diatomic molecules.  

 

Thus herein we are going to derive the above relationship between T0, M0, and R0  for 

a diatomic molecule, based on the Born and Oppenheimer (B&O) approximation. 

Note that as we shall disclose, the outcome is somewhat rigorous, though it is based 

on the B&O approximation.  

 

In Section 2, we present an essential relationship between the total energy E0 of the 

wave-like object in hand, its size of concern and its clock mass. We shall call this 

relationship the universal matter architecture cast (UMA). We summarize its 

derivation in Appendix A. The B&O approximation is summarized, next, in Section 3. 

 

The relationship T0  ~ 
e0 mgM 2

0R   is thence derived,  in Section 4. 

 

In this relationship, it becomes clear that g, is a quantity purely related to the 

electronic bond structure of the molecule. We anticipate thus that g, should remain 

practically constant for chemically alike bonds. This allows us right away, to draw an 

architectural foundation and a totally new systematization for diatomic molecules, 

since the above relationship reduces to an even simpler one, i.e. T0 ~ 
0M 2

0R , for a 

family of chemicaly alike molecules.  

 

This, were the quantum numbers overlooked, further reduces to T0 ~ 2

0R , for different 

electronic states of a given molecule; this latter is an approximate relationship known 

since 1925, but never disclosed so far. The proportionality constant in question 

indeed, embodies essentially non-trivial quantum numbers. They are pinned down in 

Section 5. The subsequent elucidation is undertaken in section 6. A conclusion is 

presented in Section 7. 

 

This terminates the content of the present Part I.    

  

The disclosure of the proportionality constant embodied by the above relationships, 

requires an elaboration; this, particularly on the basis of H2 molecule, shall constitute 

the topic of Part II of this work, thus essentially yielding the calibration of of the 

composite quantum number n1n2, as well as the identification of the seemingly 

ambiguous data . 

 

Various applications, in excellent agreement with our unique approach are presented.  

 

Our work can easily be extended our work to polyatomic molecules.  
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We like to stress that we found practically nothing achieved in the literature, along the 

line we pursue herein. 
 

2. THE UMA CAST 

 

For a “real” atomistic or molecular wave-like object, i.e. a wave-like object existing 

in nature, we have shown elsewhere the following theorem, first, on the basis of the 

Schrodinger Equation, as complex as this may be, then on the basis of the Dirac 

Equation, whichever may be appropriate, in relation to the frequency of the internal 

dynamics of the object in hand.
4
 A “real” atomistic and molecular wave-like object, 

involves a potential energy made of only “Coulomb Potential energies”. Thence even 

a relativistic Dirac description embodying potential energies made of potential 

energies other than Coulomb Potentials energies, may indeed not represent a “real” 

description. 

  

Theorem 1: In a “real wave-like description” (thus, not embodying artificial 

potential energies), composed of I electrons and J nuclei, if the 

(identical) electron masses mi0, i = 1,..., I, and different nuclei masses 

mj0, j = 1,…, J, belonging to the object, are overall multiplied by the 

arbitrary number γ, then concurrently, a) the total energy E0 associated 

with the given internal motion of the object, is increased as much, and 

b) the size 0R  to be associated with this motion contracts as much; in 

mathematical words this is     

  

 { (mi0, i = 1,..., I)   (γmi0, i = 1,..., I) ,  [ (mj0, j = 1,…, J)   (γmj0, j = 1,…, J) ] }                        

   00 EE  ,   0R


0R
   .                              (1)  

 

A general derivation of this occurrence is presented in Appendix A. 

 

Note that, for every particle of mass m0 belonging to the wave-like object in hand, the 

term )m8(h 0

222   takes place, within the frame of the wave-like description of this 

object. This makes that, as we shall soon undertake from a different angle, multiplying 

all of the masses m0’s of concern by an arbitrary number, is identical to dividing 
2h  of  

[ )m8(h 0

222  ] by this number, and the output Eq.(1) through the latter operation 

will still hold (provided that the wave-like object is “real”, i.e. embodies just 

Coulomb potential energy terms). 

 

Interestingly, multiplying all of the masses by a given number and multiplying 
2h  by a 

given number, within the frame of the wave-like description in consideration, at the 

first glance, do not really evoke the same sense. As we gather, multiplying all of the 

masses by a given number (i.e. altering all of the masses by the same amount), to 

many of us, seems a useless artificial operation. Quite on the contrary, undertaking a 

similar operation with 
2h  can be quickly associated with a quantum jump to an 

excited state. 

Thus, as trivial as it may be, the equivalence of multiplying 
2h  by a given number to 

dividing all of the masses by this number, seems worth to be framed separately. 
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This constitutes our Theorem 2. 

 

Theorem 2: Altering brutally, as much as this may not make any immediate physical 

sense, all of the masses that take place within the frame of a wave-like 

description by a given amount, is identical to dividing h
2
 in this 

description by the same number, may this latter operation be in the aim 

of the formulation of an eigenstate.   

 

Anyhow, as we shall detail below, changing all of the masses that take place within 

the frame of the wave-like description, may very well not be meaningless at all. 

Anyway, we are going to stand on this theorem, to benefit from the output of 

Theorem 1, in the case where indeed one aims to formulate an eigenstate via the 

introduction of quantum numbers, right next to h
2
, in the wave-like description in 

consideration.  

 

Regarding Theorem 1 note that, since the clock mass M0 is just a mass, manufactured 

based on different masses embodied by the object in hand; multiplying these masses 

by  γ, alters M0 just as much. 

 

Eq.(1) immediately yields the invariance of the quantity 2

000ME R . This is 

remarkable, since this quantity is as well Lorentz invariant (were the object brought 

into a uniform translational motion). 

 

Theorem 2 yields the invariance of the quantity 2

0

2

00 )h/M(E R , were M0 left 

unperturbed, and h
2
 instead, is multiplied by a given number.  

 

The elements composing the quantity
2

000ME R  anyway are all, somewhat quantized 

quantities. Therefore we anticipate that
2

000ME R  ought to be in relation with a 

Lorentz invariant, universal constant, incorporated by the wave-like description in 

question.  

 

Thus the quantity 
2

000 RME  should be “strapped” to the square of the Planck 

Constant, h
2
 (being proportional to it, through a rather complex, dimensionless, and 

relativistically invariant quantity, which is somewhat a characteristic of the bond 

structure of the wave-like object in hand). This is further elaborated in Appendix A. 

 

The foregoing findings make the content of our Theorems 3 and 4. 

 

Theorem 3:  For any real wave like obect, the product 2

0

2

00 )h/M(E R  remains 

invariant, were M0 arbitrarily altered; the same holds when instead, h
2
 

is multiplied by an arbitray number. 

 

Theorem 4:  The quantity 
2

000ME R  is strapped to h
2
. 

 

 

Thus in short, following the elaboration we preset in Appendix A, 
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    2

000ME R  ~  h
2 

  .                                                         (2) 

 

We call this occurrence, the UMA (Universal Matter Architecture) Cast.  

 

The proportionality constant depicted by Eq.(2) shall be worked out separately.  

 

Note further that primarily what we do is not a “dimension analysis”. In effect,  

Theorem 3 would not work [i.e. 2

0

2

00 )h/M(E R  would not be invariant in regards to a 

mass change], if the wave-like object in question is not “real”, though of course, 

dimension-wise there would still be no problem.  

 

One may question the meaningfulness of an overall mass change, we considered 

within the frame of Theorem 1. Indeed, an overall mass change of the entity in hand, 

at the first glance, seems meaningless. 

 

Yet as seen, it already allowed us to land at Theorems 3 and 4, condensed into Eq.(2). 

We will see that this latter relationship shall still constitute a valuable tool within the 

frame of the particular case of the electronic description of a diatomic molecule 

(where the clock mass reduced merely to em , the electron mass), yielding a unique 

systematization of molecular spectroscopic data. 

 

Secondly one should recall that an overall mass change is after all, not that 

meaningless, since it indeed comes into play were the object brought to a uniform 

translational motion, or were it planted into a gravitational field. Thence one better 

urges to examine what happens to its quantum mechanical description, under such 

circumstances.  

 

Finally we will soon see that Theorem 1, more specifically Theorem 2, is amazingly 

interesting in determining quantum numbers to be associated with excited levels of a 

wave-like object, as complex as this may be. 

 

3. BORN AND OPPENHEIMER (B&O) APPROXIMATION 

  

The non-relativistic quantum mechanical description of a diatomic molecule can be 

achieved via the usual Schrödinger Equation, involving the “two nuclei” and the 

surrounding “electrons”:  

 

             

e,B,Ae,B,Ae,B,A

i Bi

2
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i Ai

2
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2
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e,B,A
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E
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eZ
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eZ

r

eZZ
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m

1
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1

8

h
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





























    .             (3) 

 

 

 

 

Here the subscripts “A” and “B” designate the nuclei, and “e” designates the electrons. 

We have then the following notation.  
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mA : mass of A 

mB : mass of B 

ZA : atomic number of A 

ZB        : atomic number of  B 

me : electron's mass 

e : electron's charge 

rAi        : i
th

 electron's distance to A 

rBi  : i
th

 electron's distance to B 

rii’           : distance between the i
th

 and the i
th

 electron 

rAB : distance in between the nuclei  

e,B,A   : eigenfunction associated with the molecule 

e,B,AE   : eigenvalue associated with the molecule 

 

Note that the above description is quite satisfactory, since the relatively slow motion 

of the nuclei can indeed be fairly treated by a non-relativistic approach. 

 

Eq.(3), through B&O approximation, is reduced into the separate descriptions of the 

“nuclear” and “electronic” motions.  

 

We thus come, as usual, to solve separately the two following non-relativistic 

Schrödinger Equations, written with the familiar notation
9
: 

 

      B,AB,AB,A

2

AB0

2

B

B

2

A

A

2

2

Errk
2

1

m

1

m

1

8

h
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






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


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


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
    ,                          (4) 

 

    eee

i Bi

2

B

i Ai

2

A
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2
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'i,i 'ii

2

i

e

2
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e

2

2

E
r

eZ

r

eZ

r

eZZ

r

e

m8

h

















     .       (5) 

 

Eq.(4) describes the nuclei vibrational motion, about the internuclear distance rAB to 

be input to this equation (for a given electronic state of the molecule), whereas Eq.(5) 

describes the electronic motion around the two “fixed” nuclei. Thus, one solves 

Eq.(5), for a given electronic state, in order to determine how the electronic energy Ee 

varies with respect to rAB, and find the internuclear distance rAB, which makes 

minimum Ee, more precisely Ee(rAB) ; we call rABmin  and Eemin, respectively, the 

internuclear distance and the eigenvalue in question (for the given electronic state); 

this is then rABmin as rAB, to be input to Eq.(4). Normally Eemin is negative; yet below, 

by Eemin we shall mean |Eemin|. 

 

The force constant 0k  to be input to Eq.(4) is given by 

 

                                       0k  = 
 

minABAB
2

AB

ABe

2

rrr

rE




   .                                            (6) 

 

Knowing 0k  and rAB related to the ground electronic state of the diatomic molecule in 

hand, one can subsequently construct Eq.(4), and solve it, as usual for the vibrational, 
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also rotational eigenvalues EA,B, associated with the electronic state of the molecule 

of concern.  

 

 e  is the electronic motion eigenfunction associated with the eigenvalue Ee(rAB), and 

 A,B is the nuclei motion eigenfunction associated with the eigenvalue EA,B.  

 

EA,B can be expressed, with the familiar notation, as  

 

                           EA,B = 
 

0,1,...;v0,1,...;j;h
2

1
v

Iπ8

h1jj
BA,

AB

2

2












                    (7) 

 

 here IAB is the “moment of inertia” of the nuclei: 

 

                                          IAB = MAB  r AB

2  ,                                                                 (8) 

    

where MAB is the nuclei reduced mass. 

 

B,A  is the classical vibrational frequency of the molecule, the inverse of which,   

TA,B , is the classical vibrational period of the molecule. TA,B is given, as usual, by  

 

                                           TA,B = 2
0

AB

k

M
    .                                                           (9) 

 

Thus, along this definition, EA,B [as expressed by Eq.(7), above], is the solution of 

Eq.(4), for the nuclear motion of the molecule. 

 

4. THE “VIBRATION PERIOD”, VERSUS THE “DIATOMIC MOLECULE 

CLOCK MASS” AND THE “INTERNUCLEAR DISTANCE”  

 

The B&O approach, together with the UMA Cast, stated above, i.e. Eq.(2), allows us 

to draw an elegant relationship for the vibrational motion of a diatomic molecule, in 

terms of different masses taking part in the internal motion of the molecule, and the   

“internuclear distance” coming into play. 

 

Eq.(2) indeed should be valid within the frame of  Eq.(5)
*
, since this latter embodies 

potential energy terms, each just in the Coulombian form. On the other hand me (the 

electron mass) is the only mass, coming into play in this equation. 

 

Thence Eq.(2), on the basis of Eq.(5), shall be written as    

 

                                 Eemin me
2

ABr min
 ~  h

2 
      [written out of Eq.(5)] .                       (10)  

                                            
*
 Eq.(2) holds within the frame of Eq.(3). It must also in principle hold within the frame of Eq.(4). But 

here, the original structure of the Schrödinger Equation had been perturbed by the introduction of the 

approximate Morse potential. So, whether Eq. (2) holds within the frame of Eq.(4) is not trivial. 

Nevertheless, as it is summarized in Appendix A, Eq.(2) ought to hold for any wave-like object, 

existing in nature, which we call a “real wave-like object”. 
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The proportionality constant to be introduced in this relationship shall soon be 

worked out. 

 

Ee(rAB) can be as usual expressed fairly in terms of the force constant 0k , defined by 

Eq.(5), as 

 Ee(rAB) =  Eemin + 
2

1
 0k (rAB – rABmin)

2
 .                                 (11) 

 

It should be emphasized that this relationship does not display characteristics such as 

“anharmonicity” and “dissociation”; but throughout this work we are going to deal 

with only the lowest vibrational level of the states of concern. Thus, even when we 

deal with an exited electronic state, Eq.(11) is quite valid for the lowest vibrational 

level of it. 

 

Ee(rAB) vanishes at the abscissa rAB, which we can define with respect to rABmin, i.e. 

 

rAB = p rABmin  [value which makes Ee(rAB), vanish] ;                             (12) 

 

p is an unknown parameter at this stage, though it appears to be roughly around 2.  

 

Eqs.(11) and (12), provides us with the possibility of expressing Eemin, as   

                      Eemin = 
2

1
0k (p  1)

2
 2

ABr min
    .                                                  (13) 

 

We plug the RHS of this equation in Eq.(10); next, we use Eq.(9) to eliminate the 

force constant 0k ; thus we arrive at the simple expression for B,AT , i.e. 

B,AT
eABk mg

h

1
~ M 2

ABr  ,                                          (14) 

 

where kg  is defined as   

2

)1p(
g

2

k


   .                           (15) 

 

note that the subscript “k”  stands for the force constant k. 

 

At this stage we can simplify our notation. Thus from now on we shall call B,AT , 

0T ; B,A , 0 ;MAB, M0, and rAB, r0.  

 

The quantity  

    M0 = e0mM   ,                                                                      (16)  

 

has the dimension of a mass; we call it the “vibrational clock mass” to be associated 

with the vibrational motion of the diatomic molecule in hand.  

 

The proportionality constant in Eq.(14) shall embody a geometry factor, and as we 

shall figure out, quantum numbers. A geometry factor of 2  originates from the use 
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of Eq.(10) [where h
2
 may be read as h

2
/4 2 , and accordingly, 2   is left after the 

square rooting, on the way to Eq.(14)]; an other 2   factor originates from the use of 

Eq.(9); thus altogether, a geometry factor of 24  shall be expected to multiply 

Eq.(14).  

 

The quantum numbers to be introduced in Eq.(14) turn out to be more peculiar, and 

we elabourated on this, below. Nonetheless, one can sense that [h
2
]

 
in Eq.(10), should 

be in fact read as usual, as [n
2
 h

2
], more precisely as [n1n2 h

2
], n1 and n2 being 

principal quantum numbers of electrons making up the bond(s) of the diatomic 

molecule in hand. Note yet that, these numbers shall not be nice integer numbers, as 

one may be inclined to expect at a first glance.   

 

Eq.(14), thus becomes 

                 e0

21

2

0 mMg
nnh

4
T


 2

0r .                            (17) 

 

where g is an overall dimensionless quantity; it is different than kg , since it also 

involves a similar quantity, which we call INg , coming into play within the frame of 

Eq.(10); note that the subscript “IN” stands for “invariance”, since INg  is associated 

with the invariant quantity 2

00 RME . A discussion is provided about the significance 

of the dimensionless coefficient INg , in Appendix A. 

 

Note that the geometric average of 21nn  appearing here, is solely due to the square 

rooting of 2

21 hnn , we undertook on the way. 

 

This relationship, though g is not known beforehand, is rigorous. In fact, despite the 

B&O approximation we adopted, also the approximate Morse potential we introduced 

at the level of Eq.(10), g (to be determined), ultimately insures the equality of Eq.(17).  

 

More profoundly, Eq.(17) displays a striking feature; it is that, “space” (size) and 

“time” (period of time) are separable from each other, if “mass” (clock mass) were 

considered the “size” and “period of time” dependent function. Though we arrived at 

Eq.(17), through an approximation, henceforth its cast, concerning the separability in 

question, still appears to be rigoruos.  

 

One may recall that, such a separability does not at all seem obvious. Note that in 

effect, “moments” and “locations” are, through the Lorentz transformations, 

interrelated (and are not independent from each other), in regards to transformations 

beween inertial frames of reference. However (Lorentz transformations of) 

“differences of instants” and “differences of locations”, well happen to be 

independent from each other. It should be this fact, which makes the setting of “size” 

and “period of time” in a wave like object, are independently linked to the “clock 

mass” quantity. 

 

It becomes clear that, g is purely related to the electronic structure of the molecule’s 

bond. Thus, for alike bonds, in a given chemical family, we come to expect g, to 

remain virtually the same.  



 

 
 

12 

 

Indeed note that, already without the use of quantum numbers, the plots of 0T  versus 

2

00 rM , for members of a given chemical family, exhibit nicely increasing, almost 

faultless, smooth curves. We present eight examples in Figures 1 -  7. 

 

We call g, the “molecular bond looseness factor”, for as one can check, the inverse of 

it is roughly proportional to the dissociation energy of the molecule. 

 

Our approach allows us to draw a whole new systematization of diatomic molecules, 

and more.  

 

The introduction of quantum numbers n1n2 though, requires a demonstration. Next, 

they should be somehow determined. This is what we shall now achieve. (A detailed 

study shall be undertaken on the basis of H2 molecule, through Part II of this work.) 

 

5. ELABORATION ON THE QUANTUM NUMBERS 

 

The presence of quantum numbers in Eq.(17), is right awayinduced by the 

identification of the RHS of Eq.(2) as 2h . This equation is further transformed into 

Eq.(10), written for the mere electronic description of the molecule [cf. Eq.(5)].  

 

The excited electronic eigenstates of the molecule should anyway involve quantum 

numbers. 
†
 The simplicity of Eq.(2) or Eq.(10), as implied by Theorem 4, clearly 

leaves no other room to quantum numbers that shall come into play in these 

equations, other than that, right next to 
2h .  

 

Thus a composite quantum number N (i.e. the product of the two principal quantum 

numbers to be associated with the bond electrons, in the case of a diatomic molecule),  
should come to multiply h

2
, in Eq.(2) or Eq.(10), regarding an excited eigenstate, in 

just the same way the square of an integer quantum number related to an excited state 

of the simplest wave-like objects (for example, the hydrogen atom), comes in a similar 

relationship, to multiply to h
2
.  

 

This piece of information makes that, were N somehow known, one can introduce it 

right next to h
2
, into the framework of the ground level wave-like description (i.e. the 

Hamiltonian) of the entity in hand, and consequently determine the eigenvalue, and 

the characteristic length induced by the resulting formulation.  

 

Though there is a peculiarity. 

 

 

 

 

Eq.(10), in the simplest case of the hydrogen atom, shall (with the usual notation) be 

written as 

                                            
†
 Any excited eigenstate shall obviously involve quantum numbers. But here, we are particularly 

interested in  electronic excited eigenstates. 
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28 En INg me
2

nR  =  n
2
h

2 
  ;              (10, rewritten)                    

       (for the hydrogen atom, INg  is unity)                         

 

here En is the total energy of the n
th

 electronic state, Rn is the corresponding 

characteristic size, and n the principal quantum number; INg  is a coeffcient related to 

the electronic configuration we visualized (next to the geometry factor), at the level of 

Eq.(10).   

 

In the case of the hydrogen atom, INg  is unity, regardless n. Thus, in these case 1) INg  

is unity at the ground state, but also 2) INg  remains the same at all electronic levels. 

 

Neither property holds for systems of higher complexities, though as we show, an 

equation similar to Eq.(10) can well be written for any diatomic molecule, or further 

any wave-like entity.   

 

Since INg  [of Eq.(10)], more generally g [of Eq.(17)] appear to be purely related to 

the electronic structure of the entity in hand, we expect them to remain the same, for 

alike electronic configurations. This hold within the frame of alike electronic states of 

a given molecule, as well as within the frame of alike ground states of molecules 

belonging to a given chemical family. 

 

However, as one jumps from the ground state of a complex system, such as that of a 

diatomic molecule, to an excited state of this entity, it is not obvious that the 

electronic configuration shall stay the same; in fact, generally it will not. Take for 

instance the hydrogen molecule. Its excited electronic states a priori, will not bear the 

same electronic configuration as that of the ground state, unless the two electrons are 

excited in a complete symmetry. Even then, the shielding effects may not be the same.  

 

This is the peculiarity we wanted to clarify. 

 

 

Thus, as the molecule jumps from its ground state to an excited state, in general, it is 

not only that, h
2 

is multiplied within the framework of the wave-like description, by 

the appropriate quantum number; but we should further represent the change that 

takes place in the electronic structure. That can be taken care of, by a corresponding 

change in the coefficient INg  of Eq.(10).  

 

In fact, altering h
2
 and altering both h

2
, together with INg  so that the ratio h

2
/ INg  is 

changed by the same amount, within the frame of Eq.(10), are mathematicaly 

equivalent operations, yet as discussed, physically they appear to be quite different.   

 

Thereby we can conceive an excited electronic state as achieved in two steps: 1) 

Switching the ground state electronic configuration into the new configuration by just 

changing INg . 2) Jumping from this configuration to the new quantum state. 
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For electronic state configured like the ground state, we will have to achieve only the 

second step. 

 

This, yields the content of our Theorem 5. 

 

Theorem 5:  Were the atomic or molecular wave-like object in hand, at a given 

electronic state, characterized by the composite quantum number N,  

then the eigenvalue and characteristic length associated with this state, 

become the output of the formulation one obtains by multiplying h
2
 

with N, in the framework of the ground state description, provided that 

the two states are configured similarly. 

 

So the introduction of appropriate quantum numbers in Eq.(10), next to 2h  (within the 

framework of the wave-like description), in order to take care of the excited electronic 

eigenstates of the molecule as complex as this may be, appears to be as standard as 

this is, for the simplest atomic object, provided that the two states are configured 

similarly. 

 

We can predict the solution of the new set up, through Theorem 1. It can be obtained 

based on a reformulation of this theorem. Thus we establish our Theorem 6 regarding 

an excited electronic level of the wave-like object in hand. 

 

Theorem 6:    In a “real wave-like ground description” if, in the aim of expressing an 

excited eigenstate, 2h  is multiplied by the composite quantum number 

N (the inverse of te eigenvalue related to this eigenstate, were the 

ground state energy normalized to unity), then concurrently, a) the 

magnitude of the total ground energy E0 associated with the given 

wave-like object, is decreased much, to become E, the new eigenvalue, 

and b) the corresponding ground state size 0R  stretches as much, to 

become R, the new size, provided that the two states are configured 

similarly; in mathematical words this is     

 

   [ 22 hh N ]    {[
N

0

0

E
EE  ], [ 00 RRR N ]}.              (18) 

 

This draws an additional aspect of the meaningfulness of multiplying the overall mass 

of the wave-like object by a given number, since this turns out to be identical to 

dividing h
2
 of the wave-like description in hand, by the same number, or vice-versa. 

 

Note that Theorem 6 holds for any excited eigenstate (rotational, vibrational, 

electronic, or else). 
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This theorem, for excited states of the molecule, configured like the ground state, 

yields at once 

 
0R

R
N    .         (19) 

 (Composite quantum number of the excited eigenstates,  

  were this configured like the ground state) 

 

This interestingly holds no matter how complex the molecule may be.  

 

Accordingly we establish our next theorem. 

 

Theorem 7:  The composite quantum number to be associated with an excited 

eigenstate, is the mere ratio of the size the object displays at this 

excited state, to the size the object displays at the ground state, 

provided that the two states are configured similarly. 

 

Theorem 7 can be checked for the electronic states of hydrogen atom. It is surprising 

that it holds for any object and for any excited eigenstate the object may involve. 

 

What if the electronic structure of the excited state is not the same as that of the 

ground state? 

 

The answer is fortunately not complicated. Since the the coefficient INg  in Eq.(10) 

comes to multiply the mass of the electron, which happens to be the only mass taking 

place in the description of the electronic motion of the diatomic molecule, any change 

in INg , evidently can be represented by a corrresponding hypothetical change in the 

mass of the electron.  

 

If further, we are concomitantly to consider a quantum number N  to be associated 

with the excited eigenstate in question (i.e. configured in a different way than the 

ground state), then based on Eq.(10), this state can well be described by merely 

altering h
2
/me in the framework of the ground state of the molecule by 

N finalINinitialIN )g(/)g( , where the subscripts “initial” and “final” refer respectively to the 

ground state and the excited electronic state in consideration. 

 

The ultimate output, is at once framed by Theorems 1 and 2. 

 

Theorem 8:  The ratio of the size a diatomic molecule displays at an excited excited 

state, to the size it displays at the ground state, is equal to                    

N finalINinitialIN )g(/)g( , i.e. the composite quantum number to be 

associated with the excited state, times a coefficient, the inverse of 

which quantifies how much the overall ground state electronic 

configuration is altered.  

 

In what follows we shall solely focus on excited electronic eigenstates [since we 

visualize Eq.(17), for just the lowest vibrational state of an electronic eigenstate]. 
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Note that the usage of Eq.(19) along Eq.(17) requires that the coefficient g is not 

altered as the molecule passes from its ground level to the given excited electronic 

state, so that we can plot T, the largest vibrational period at the given excited 

electronic state, versus 2

0

2/1 RN , where R0  is the size of concern, at this eigenstate. 

 

6.  THE  DISCLOSURE  OF  THE  AGED EMPIRICAL  RELATIONSHIP   

0 r
2

0  = Constant, AND THE COMPLETE SET OF H2 ELECTRONIC 

VIBRATIONAL DATA: A NEW SYSTEMATIZATION OF DIATOMIC 

MOLECULES 

  

Recall that the following empirical relationship, evoking very much Eq.(17), had been 

established for a given diatomic molecule, back in 1925, yet not unveiled                   

so far:
10, 11, 12, 13, 14  

 

 2r  = Empirical Constant ;                          (20)  

 

(approximate relationship written in 1925 

     for the electronic states of a given molecule) 

 

here,   is the ground vibration frequency, i.e. the inverse of the vibrational period T, 

related to a given electronic state of the molecule, and r  the corresponding 

internuclear distance.  

 

The “Empirical Constant” is then to be determined separately, for each diatomic 

molecule.  

 

Eq.(20) bears the same cast as that of Eq.(17) (as far as the dependency of the 

vibrational period on the internuclear distance is concerned); yet it does not include 

the quantum numbers.  

 

Eq.(17), together with Theorem 6, instead suggests that we should look at the 

relationship  

                       2/3

e00

2
2

e0

0

2

rmrg
h

4
rmg

r

r
h

4
T MM





  ,                          (21) 

(relationship written for the largest vibrational period  

 of excited electronic states of a given molecule) 

 

where 0r  is the internuclear distance at the very ground state, as usual.  

 

0r/r  taking place in the above relationship, following Theorem 6, is just the 

composite quantum number to be associated with the electronic state taken in 

consideration.  

 

Eq.(21) makes that based on any molecule, regarding electronic states bearing similar 

configurations, for which g, the bond looseness factor, remains about the same, 
2T  

versus 
3r  should display a straight line.  
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The approximate empirical constant of Eq.(20), can now be evaluated from Eq.(21), 

as  

 Empirical Constant 

e0

2 mg4

h

M


N
;                          (22) 

 

recall that N is the composite quantum number, i.e. 0r/r  (staying indeed roughly the 

same, were r is not far from r0), making up that the “constant” is question is indeed 

only approximately, a constant, supposing anyway that the electronic states in 

question, are configured similarly, so that g stays practically constant, throughout. 

 

This entirely discloses the mechanism behind the approximate empirical relationship 

[Eq.(22)], established back in 1925.  

 

Thus, Eq.(22) makes that, it is not really the quantity 2r  which is a constant for 

electronic states of a given molecule, configured similarly, but based on Eq.(19), more 

likely it is the quantity 

Constant = 23r / .                (23) 

 

(written by the author, for similar  

electronic states of a given molecule) 

 

This new constant then is 

Constant 

0e0

2 rmg4

h

M
 ;              (24) 

 

(written by the author for similar  

electronic states of a given molecule) 

 

recall that 0r  dominates the internuclear distance, at the ground state. 

 

As an example, 
2T  versus 

3r  for H2 molecule, is sketched in Figure 8. Thus some 23 

states out of 29, for which data is available, are neatly aligned. Herein, we included 


2H , which too seems to display the same g as that of H2 ground state; we find g0.8. 

The remaining 6 electronic excited states of H2 seem to be configured differently. We 

call these “ambiguous states” (the previous 23, being seemingly all configured 

approximately like the molecule’s ground state).  

 
2T  versus 

3r  for H2 molecule, is sketched in Figure 8. Thus some 23 states out of 29, 

for which data is available, are neatly aligned. Herein we included 

2H , which too 

seems to display the same g as that of H2 ground state; we find g0.8. The remaining 

6 electronic excited states of H2 seem to be configured differently. We call these 

“ambiguous states” (the previous 23, being seemingly all configured approximately 

like the molecule’s ground state).  
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The study of the electronic vibrational data of H2 molecule is undertaken in details in 

Part II.  

 

To analyze the remaining 6 data (out of 29), we note, out of Eq.(14) that, switching 

the nuclei reduced mass M0 of alkali molecules or alkali hydrides into that of the 

hydrogen molecule, should virtually transpose the corresponding vibrational period, 

into the vibrational period of H2 electronic state of of the same electronic character; 

recall that switching the nuclei mass does not practically affect the electronic 

structure of the molecule, and accordingly we should expect that amongst H2 

electronic states there are states, configured like the ground electronic states of alkali 

molecules and alkali hydrides.   

 

Therefore we anticipate that the 6 ambiguous electronic states of H2 should be 

configured just like the respective ground electronic states of alkali molecules and 

alkali hydrides, and vice versa.  

 

6.  SYSTEMATIZATION OF GROUND STATES OF ALL DIATOMIC 

MOLECULES  

 

Our approach makes that we can visualize Eq.(21) not only regarding the electronic 

states of a given molecule, but also regarding the ground states of molecules 

belonging to a given chemical family, thus exhibiting similar electronic 

configurations, with virtually the same g. 

 

Let us elaborate on this a little. 

 

Above we have rigorously proven that Eq.(15) holds for any diatomic molecule, i.e. 

 

2

0e0

21

2

0 rmg
nnh

4
T M


 ,        (15) (rewritten) 

 

21nn  being quantum numbers induced by the Planck Constant [cf. 

Eq.(10)(rewritten)]. 

 

Within the frames of Theorems 6 and 7, regarding the electronic states of a given 

molecule, we have established that 21nn  turns out to be the ratio of the internuclear 

distance of the molecule at the given excited state, to the internuclear distance of the 

molecule at the ground state, provided that these states are configured alike. 

 

We have further demonstrated that already the cast 
2

00 rT M~  holds fairly well 

regarding diatomic molecules belonging to a given chemical family, thus being 

configured similarly, so that g stays virtually the same, throughout each one of the 

Figures 1-7. 

 

Further straightening up of these curves, requires to specify 21nn . 
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At this stage consider Figure 8, where we analyzed 2H  spectroscopic data, and found 

out that the ambiguous states are configured like alkali hydrides, and 2Li . 

 

This suggests that, quantum mechanically we can well describe, say the ground state 

of 2Li , on the basis of  an equivalent 2H  excited state. 

 

Therefore the corresponding quantum numbers 21nn , we propose to associate with 

2Li  ground state, in comparison with the 2H  ground state, following Eq.(18) and 

Theorem 7, becomes the mere ratio of the internuclear distance of 2Li  at its ground 

state, to the internuclear distance of 2H  at its ground state, given that the 2H  and 2Li  

bonds, are configured similarly. 

 

Hence, we rewrite Eq.(21) (not for the excited levels of a given molecule), but for the 

ground states of molecules belonging to a given chemical family, and accordingly 

being configured alike: 

2/3

i000i0

2

i0i0

00

i0

i0 rrg
h

π4
rg

r

r
h

π4
T MM

22

  ;                        (25) 

(written by the author for the ground vibrational  

period of molecules belonging to a given chemical family) 

 

here i0T  is the ground state largest vibrational period of the ith member of the 

chemical family in consideration; M0i is the reduced mass and; i0r  is the ground state 

internuclear distance of this member; 00r  is the internuclear distance of the ground 

state of the family’s member, chosen as the reference molecule; more precisely we 

pick up as the member bearing the lowest vibrational period. 

 

Therefore 
2

i0T  versus 3

i0i0 rM  for chemically alike molecules, should display a linear 

behavior, the slope of which shall furnish g, to be associated with the chemical family 

in consideration.  

 

Thus we can now write an equation similar to Eq.(21), in regards to the ground states 

of molecules belonging to a given chemical family: 

 

 2/3

i000i0i0

21

2

i0i0i0 rrω
nn

rω
Constant M

M
  ,                     (26) 

 

(written by the author, for the ground states  

of chemically alike molecules) 

 

where i0  is the inverse of the ground state vibrational period of the molecule of 

concern. 
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The constant in question shall be expressed as 

 

 

e

2 gm4

h
Constant


 .                    (27) 

 

Although 00r  is a constant within a given chemical family, we still included it, in the 

RHS of Eq.(26), to define our constant to be the same for all chemical families, if g 

remained the same, thus as suggested by the RHS of Eq.(27).  

 

In Figures 9-15, based on experimental data,
13, 15, 16

 we present i0T  versus 3

i0i0 rM , 

for seven chemical families, for which the coefficient g, stays indeed neatly constant. 

The constancy of 2/3

i0i0i0 rM  in harmony with Eqs.(26) and (27), is quantitatively 

demonstrated, in (the fifth column of) Tables 1-7.  

 

g’s are calculated from Eq.(27) for different chemical families, and are presented in 

Table 8. Note that g’s vary between 0.79 and 0.01. 

 

Note that following Eqs. (26) and (27), the value of constancy of 2/3

i0i0i0 rM  depends, 

both on g and 00r  (the reference internuclear distance of the family of concern), which 

makes that the “constants” calculated in (the fifth columns of) Tables 1-7, differ. 

 

Note further that, the standart deviation on the constants in question, is roughly ten 

percent. There seems to be two reasons for this. The first one is that chemically alike 

molecules, on the contrary to our assumption, are not exactly configured similarly, 

which may make that g is not a constant throughout. The second one is that our 

supposition that the RHS Eq.(18), can be used to replace the the composite quantum 

number 
21nn  in Eq.(15), even for chemically alike molecules (where we choose the 

molecule with the lowest vibrational period, as the reference molecule), may not be 

rigorous. Along this line it seems interesting to recall that, when we use the principal 

quantum numbers associated with the bond electrons, straight, to compose 
21nn , 

instead of using Eq.(18), we come out with the constancy of 
21

2

i0i0i0 nnrω /M , not any 

worse than that of  2/3

i0i0i0 rω M [cf. Eq.(26)].
7,8 

 

Since g happens to be roughly, inversely proportional to the dissociation energy of the 

molecule, as one can observe from Table 1, it indeed decreases as the bond becomes 

stronger. Thus, the smaller g is, the higher is the number of the covalent bonds, 

making the overall bond of the diatomic molecule, or the higher is the number of free 

electrons an atom possesses, the looser will be the bond it will make with, say, an 

halogen, thus the higher will g be, etc.
 17
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      Table 1 Checking the Validity of Eq.(23), for Alkali Molecules 

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
3
c) 

 

 

)A(

r0


 

 

23

00

0

r

T
/M

 

 
ErrorlativeRe

 as  

Referred to 

the Average 

 

H2 0,50 0,24 0,74 0,53 0,52 

Li2 3,50 2,89 2,67 0,35 0,01 

LiNa 5,33 3,89 2,90 0,34 0,03 

Na2 11,50 6,34 3,08 0,35 0,01 

NaK 14,48 8,06 3,50 0,32 0,08 

K2 9,49 10,80 3,92 0,45 0,29 

KRb 26,83 13,2 4,07 0,31 0,11 

Rb2 42,47 17,3 4,21 0,31 0,12 

RbCs 52,04 20 4,42 0,30 0,15 

Cs2 66,47 23,8 4,64 0,29 0,17 

Average    0,36 0,15 

 

  

 Table 2 Checking the Validity of Eq.(23), for O2 - like Molecules  
 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
3
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

  

O2   8,00   0,64 1,21 0,17 0,21 

S2 15,99 1,39 1,89 0,13 0,07 

Se2     39,97 2,56 2,16 0,13 0,07 

Te2     63,82 4,00   2,59 0,12 0,14 

SO  10,67     0,90   1,49 0,15 0,07 

Average    0,14 0,11 
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Table 3 Checking the Validity of Eq.(23), for N2 - like Molecules 
 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
3
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

N2 7,00 0,43 1,09 0,14 0,06 

P2 15,49 1.29 1,89 0,12 0,06 

PN 9,65 0,76 1,49 0,13 0,00 

 

Average 

   0,13 0,04 

 

 

Table 4 Checking the Validity of Eq.(23), for Halogens 

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
4
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

F2 11,21 9,50 1,44 1,64 0,06 

Cl2 17,96 17,49 1,99 1,47 0,15 

Br2 31,15 39,96 2,28 2,08 0,19 

I2 46,87 63,47 2,67 2,13 0,22 

BrF 15,04 15,35 1,76 1,69 0,02 

ClF 12,93 12,31 1,63 1,64 0,05 

ICl 26,23 27,42 2,32 1,51 0,13 

Average    1,74 0,12 
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 Table 5 Checking the Validity of Eq.(23), for CsBr - like Molecules  

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
4
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

CsBr 52,63 49,92 3,14 1,24 0,51 

CsI 71,63 64,94 3,41 1,22 0,49 

NaCl 26,46 13,95 2,51 0,68 0,17 

NaBr 31,98 17,86 2,64 0,74 0,09 

NaI 35,15 19,45 2,90 0,66 0,19 

KF 25,64 12,78 2,55 0,62 0,24 

KCl 35,95 18,59 2,79 0,67 0,19 

KBr 43,55 26,26 2,94 0,79 0,03 

KI 47,48 29,89 3,23 0,75 0,08 

RbCl 39,53 25,07 2,89 0,81 0,01 

Average    0,82 0,20 

 

 

Table 6 Checking the Validity of Eq.(23), for BF - like Molecules 

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
4
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

BF 7,26 6,72 1,26 1,76 0,26 

BCl 12,06 8,38 1,72 1,07 0,24 

BBr 14,77 9,66 1,88 0,98 0,31 

AlCl 20,95 15,24 2,13 1,071 0,24 

AlBr 26,64 20,11 2,29 1,12 0,20 

InCl 31,71 26,82 2,31 1,36 0,03 

InI 56,72 60,32 2,86 1,66 0,18 

TlCl 35,09 29,87 2,55 1,24 0,12 

TlBr 52,27 57,98 2,68 1,83 0,30 

TlI 66,67 78,31 2,87 1,97 0,40 

Average    1,41 0,23 
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Table 7 Checking the Validity of Eq.(23), for CO - like Molecules 

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
4
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

CO 4,67 6,86 1,13 2,64 0,47 

CS 7,86 8,73 1,53 1,65 0,09 

SiO 8,13 10,18 1,51 1,92 0,07 

SiS 13,43 14,93 1,93 1,52 0,16 

GeO 10,23 13,15 1,65 1,94 0,08 

SnO 12,27 14,09 1,84 1,61 0,10 

SnS 20,62 25,25 2,06 1,88 0,04 

PbO 14,00 14,85 1,92 1,49 0,17 

PbS 23,49 27,72 2,39 1,55 0,14 

Average    1,80 0,15 

 

 

Table 8 Bond Looseness Factors of the Chemically Alike 

Diatomic Molecules 

 

 

 

Chemical Family 

 

Bond 

Looseness     

Factor (g) 

H2, Li2, Na2, K2 0.79 

O2, S2, Se2, Te2, OS 0.05 

N2, P2, PN         0.04 

F2, Cl2, Br2, I2, BrF, ClF, ICl 0.04 

CsF, CsBr, CsI, NaCl, NaBr, NaI, 

KF, KCl, KBr, KI, RbCl 

 0.01 

BF, BCl, BBr, AlCl, AlBr, InCl, 

NBr, InI, TlCl, TlBr, TlI 

0.05 

CO, CS, SiO, SiS, GeO, SnO, SnS, 

PbO, PbS 

0.13 
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7. CONCLUSION 

 

Note that Eq.(21) frames the force constant k of the molecule at the excited state of 

concern, as  

       
3

2

r

fe
k  ,                             (28) 

along 

eIN

2

2
2

mrg4

h
fe


 ;                  (29) 

 

here, e is the electron charge, and f is a dimensionless constant. 

 

Eq.(28) dimension-wise, is somewhat obvious, if one proposes to relate the force 

constant to the internuclear distance. This correlation was in effect proposed 

sometime ago, by Bratoz et al., for alkali hydrides,
18,19

 for which f is reported to be 2. 

Our estimation, based on the data
12

 is, on the average, 2.6.  

 

f was subsequently obtained by Salem and Ohwada
20,21 

which then, based on 

empirical presumptions, chiefly for molecules containing alkali atoms, leads to 

 

    )1N)(1N(
2

1
f ji   ,                                                 (28) 

 

where Ni and Nj, are the respective number of electrons residing outside of the 

complete shells of the atoms making up the diatomic molecule. 

 

Note thence that, under this form f, thus g, indeed stay constant, just the way we had 

originally conjectured. 

 

Eq.(28) yields 8 for alkali halides, whereas based on the data, and on the average, we 

come out with 11.1.   

 

Recall nonetheless that in order to obtain our results, we followed a totally different 

path, than that induced by Eq.(28). Moreover we arrived at our result, primarily 

regarding the electronic states of a given molecule. The literature we reviewed does 

not coop at all with such an aspect.     

 

Note further that recent trials, on the “problem of transferable spectroscopic 

constants”,
 
despite satisfactory results they may furnish, are far from displaying how 

the fundamental quantities of mass, space and time (i.e. clock mass, clock size and 

period of time of the clock motion), are structured in interrelation with each other, in 

the architecture of molecules,
22

 in fact just the way Eq.(21) reveals. 
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As far as we gather, the invariance of 2

000ME R  through, a general quantum 

mechanical description, based on an overall mass change, in relation to a real wave-

like body, seems to have been overlooked  for more than half a century (presumably 

because no meanigfulness was attributed to such a procedure), even worse, despite 

the evidence of (though approximate) empirical data (i.e. 0 r
0

2  = Constant), evoking 

it clearly, and worse of all, despite the fact that, it is well known as a relativistic 

invariant. It is in reality, via this occurrence that quantum mechanics should work as 

the internal machinery of special theory of relativity, were the object in hand brought 

to a uniform translational motion, or as well, the internal machinery of the end result 

of general theory of relativity, were the object transplanted into a gravitational field.
3,6 

We have to recall that within the frame of the special theory of relativity, the 

invariance of 2

000ME R  becomes a straightforward consequence of the constancy of 

the speed of light, in regards to all inertial frames of reference. 

 

But here, not to attract conservative reactions, we did not insist on this inspiring idea. 

 

The quantity 2

000ME R  is further “strapped” to h
2
, so that for any real wave-like 

object the relationship, 2

000ME R  ~ h
2
 [Eq.(2)] holds.  

 

We find it exciting to emphasize that, fundamentally the spcecial theory of relativity 

makes it necessary that, already at rest, a wave-like entity ought to be built in just a 

given way, and this makes that “space size”, “clock mass” and “period of time” as 

well as “energy”, one can associate with the internal motion the object displays, must 

be interrelated in just the way delineated by Eq.(2). We called this occurrence the 

UMA Cast. A general derivation of this result is presented in Appendix A. Note that, 

primarily what we did here, is not a “dimension analysis”. Anyhow the occurrence we 

disclose (as shown in Appendix A), would not work if the wave-like object in hand is 

not “real”, though of course, there still would be no problem in regards to a 

dimension analysis.  

 

The UMA Cast, together with the B&O approximation, applied to a diatomic 

molecule, led us to an elegant relationship between the period of oscillation T0, the 

clock mass M0, and the internuclear distance R0, to be associated with a diatomic 

molecule, more specifically, T0 = [ 24 / )hnn( 21
]

e0 mgM 2

0R  [Eq.(17)], where M0 is the 

nuclei reduced mass, me the mass of the electron, n1 and n2 principal quantum 

numbers to be associated with the electrons making up the bond(s) of the molecule in 

hand, and g a coefficient related solely to the bond electronic structure. The “clock 

mass” M0,  regarding the vibrational motion then becomes 
e0mM  [Eq. (16)].  

 

More profoundly, Eq.(17) displays a striking feature; it is that, “space” (size) and 

“time” (period of time) are separable from each other, if “mass” (clock mass) were 

considered the size and period of time dependent function. Though we arrived at 

Eq.(17), through an approximation, henceforth, its cast, concerning the separability in 

question, still appears to be rigoruos.  
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One may recall that, the separability of “space” and “time”  does not at all seem 

obvious. Recall that in effect, “moments” and “locations” are, through the Lorentz 

transformations, interrelated (and are not independent from each other), in regards to 

transformations beween inertial frames of reference. However (Lorentz 

transformations of) “differences of instants” and “differences of locations”, well 

happen to be independent from each other. It is indeed this fact, which should be 

responsible of the setting of “size” and “period of time”, in a wave-like object, 

independently linked to the “clock mass” . 

 

Eq.(19) is especially valid in regards to the excited electronic states of a given 

diatomic molecule. We figured thus that the composite quantum number 21nn  turns 

out to be 0/RR , where R  is the internuclear distance of the diatomic molecule of 

concern, at the given excited electronic state, and 0R the internuclear distance at the 

ground electronic state, provided that both states are configured similarly. (Note that, 

at the given electronic state, we visualize just the lowest vibrational state.) 

 

Thus for a given diatomic molecule, we expect 2T  versus 3R , to behave as a straight 

line passing by the origin, for electronic states bearing alike configuration, thus the 

same g. 

 

We test our approach successfully on the basis of 2H  molecule, and beyond. 

 

Were R close to 0R , Eq.(17) reduces to T0 ~ 
2

0R . This latter relationship was 

established empirically in 1925. Unfortunately, it was up to our approach, left out 

totally uninterpreted.  

   

Our finding about the composite quantum number, led us to extend our approach to 

chemically alike diatomic molecules. 

 

Consider for instance the alkali molecules. Then Li2 can well be considered as built at 

excited level of H2 configured like Li2, the corresponding composite number to be 

introduced into Eq.(17) then being, 0RR , where R  is the ground internuclear 

distance of the latter molecule. The same should be valid for Na2, etc. 

 

Given that H2, Li2, Na2, etc, are all expected to be configured the same at the bond 

level, they should all bear the same bond looseness factor. 

 

Thus 
2T  versus 

3

0M R  for molecules belonging to a given family, should behave as a 

straight line passing from the origin. 

* 

 

It is important to note that our relationship T0 = [
24 / )hnn( 21

]
e0 mgM 2

0R , bears the 

form of the de Broglie relationship (cf Appendix A).  
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This induces the following interesting facts:  

 

The UMA Cast [Eqs. (2), (14) and (17)], we derived out of the Schrodinger Equation 

or Dirac Equation,
23,24 

constitutes a “concise integral form” of the Heisenberg 

Uncertainty Principle.
25,26

  

 

This eases much the teaching of the “Uncertainty Principle” which can be 

reformulated a follows: Within a real wave-like object, the clock period, the clock 

mass and the clock size, should be structured in just a given manner, and this to be 

governed by the Planck Constant).  

 

It is further important to note that, say the familiar expression about the vibrational 

period of a diatomic molecule, i.e. 
000 k/2T M , herein we dealt with, displays no 

feature at all about the UMA cast, and we would be unable to show that the cast of 

this period relationship can be reduced to the UMA Cast, without our original idea 

rooted to the special theory of relativity. This point is elaborated in Appendix A. 

 

Thence, it is not obvious at all that, any “real” quantum mechanical object should be 

structured in accordance with the UMA Cast we disclose.  

 

What we developed over here, can be extended to triatomic molecules, and beyond.  

 

We conjecture that, due to the nature of the framework we have drawn, it can be 

extended as well, to the nuclear world, with hopefully no great difficulty. We like to 

stress that we found nothing achieved in the literature, along the line we pursued 

herein. 

 

 

APPENDIX A 

 

INVARIANCE BASED ON MASS VARIATION, 

MANUFACTURED BY WAVE MECHANICS: 

THE “UMA CAST” 
 

Consider an atomistic or molecular wave-like object, “existing in nature”. Such an 

object shall embody a Coulomb potential energy, thus involving a spatial dependency 

propotional to the inverse of the distance between the interacting electrical charges.  

We shall call it a “real wave-like object”, and the potential energy it embodies, a 

“real potential energy”. So by “real”, we mean“not artificially gedanken”. Note that 

the results we are going to derive herein, do not generally hold if the potential energy 

considered for a wave-like description, is not a “real” one.  

 

In this appendix we deal with the quantum mechanical description of basically 

atomistic and molecular real wave-like objects. Yet, this can be extended to real 

nuclear objects with no great difficulty. 
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A-1.  IN A REAL WAVE-LIKE DESCRIPTION, IF MASS IS INCREASED, 

THEN SIZE OF THE OBJECT CONTRACTS AS MUCH, AND THE 

TOTAL ENERGY EXPANDS IN THE SAME AMOUNT    

 

For a real atomistic or molecular wave-like object, herein we show the following 

theorem, on the basis of the Schrodinger Equation, as complex as this may be. Our 

approach can be extended to a similar demonstration on the basis of the Dirac 

Equation as well.
4 

 However, here we shall omit this latter exercise.  

 

Theorem A-1:  In a “real wave-like description” (thus, not embodying artificial 

potential energies), composed of I electrons and J nuclei, if the 

(identical) electron masses mi0, i = 1,..., I, and different nuclei 

masses mj0, j = 1,…, J, involved by the object, are overall multiplied 

by the arbitrary number  , then cocurrently, a) the total energy E0 

associated with the given internal motion of the object, is increased 

as much, and b) the size 0R  to be associated with the given motion 

contracts as much; in mathematical words this is     

 

{ (mi0, i = 1,..., I)   ( mi0, i = 1,..., I) ,  [ (mj0, j = 1,…, J)   ( mj0, j = 1,…, J) ] }                       

   00 EE  ,   0R


 0R
  .   

                       

Let us accentuate that, if the object is, say an atom, then 0R  is (no matter how we 

define it, provided that it is compatible with the Planck Constant) the radius of it; if 

the object is a diatomic molecule, 0R  is the internuclear distance, etc. 
0

R , in fact, may 

be just any length one may pick, within the framework of the object in hand, and 

Theorem A-1, as can be shown, shall still be valid.  

 

We would like to emphasize that the content of Theorem A-1 is well known on the 

basis of the hydrogen atom. Yes indeed. (In fact this is not really an overall mass 

change one considers, regarding the hydrogen atom framework, but the change of the 

nucleus proton number.) Anyway, a general overall mass change in a given entity 

was not so far considered, perhaps because no immediate meaningfulness is attributed 

to it; thus the results of such a procedure are not provided in the literature.  

 

However, as we shall see, not only the exercise we aim to, leads us to a useful 

relationship, but also, the object interestingly undergoes an overall mass 

transformation were it brought to a uniform translational motion or were it embedded 

in a gravitational field, or in fact just in any field it eventually interacts with. Thus it 

turns out to be quite interesting to examine the results of an overall mass change on 

the basis of a wave-like entity.     
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Proof of the First Part of Theorem A-1 

 

For our purpose, we consider the (time independent) Schrödinger Equation, i.e. with 

the familiar notation, written for a “real” atomistic or a molecular wave-like object 

composed of J nuclei, of respective masses mj0, j = 1,…, J,  and I electrons 

(altogether), of (the same) mass mi0, i = 1,..., I: 
 

         

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


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
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j

j 0j
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
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'j,j 0'jj

2

0'j0j

r

eZZ
)r( 00  

 

         = )r(E 000 .                                                                                                    (A-1) 

 

E0 is the eigenvalue and )r( 00 the related eigenfunction; Zj0 is the atomic number of 

the j
th

 nucleus; rij0 is the distance between the i
th

 and the j
th

 particles.  

 

Thus, multiply the masses mi0 (i = 1,..., I), and mj0 (j = 1,…, J), in Eq.(A-1) by  ; the 

eigenfunction and the related eigenvalue will accordingly be altered: 
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         =E )r( 0new .                                                                                                   (A-2) 

 

This is the same as 
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         = E )r( 0new .                                                                                                (A-3) 

 

Let now 

                                            00 rrr  ,                                                               (A-4) 

together with  

                                     )r()r( 0new .                                                                (A-5)  

Since 

   ;z,y,xu;z,y,xu;
u

u

u

)r(
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)r(
0000
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            (A-6) 

we have 

    .
u

)r(

u

)r(

0

0









                         (A-7) 
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Eq.(A-3) thus becomes                                                                                         
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Dividing by 2 , and using Eq. (A-4), this yields 

 

         









 2

j

j 0j

2

2

m8

h 2

i

i 0i

2

2

m8

h



 

j,i ij

2

0j

r

eZ


'i,i 'ii

2

r

e









'j,j 'jj

2

0'j0j

r

eZZ
)r(  

 

           = )r(
E



.                                                                                                       (A-9) 

 

In comparison with Eq. (A-1), we can deduce at once that  

 

   0E
E



 0EE     (c.q.f.d.) .                     (A-10) 

 

Thus, we achieved partly the demonstration of Theorem A-1.  

 

Proof of the second part of Theorem A-1 

 

Next we focus on a size of interest R0 (say the “size of an atom”, or the “internuclear 

distance” in a diatomic molecule of concern), to be associated with the wave like 

object in hand. R0 shall be determined based on the solution of Eq.(A-1). Following 

the mass perturbation, R0 becomes R0new, and this latter shall be found, based on the 

solution of Eq.(A-2). According to Eq.(A-4), R0new is transformed into R , i.e. 

R= new0R . (Note that according to this equation, any distance, say 0r  we would 

consider, becoming onewr  due to the mass change, is transformed into r, so that 

onewrr  . Thus the derivation presented herein, in fact holds for any distance, thence 

also for a given specific distance R0 we would pick up.)  

 

R  is to be determined as the solution of Eq.(A-9). But since this equation is identical 

with Eq.(1) [along Eq.(A-10)], the solution of Eq.(A-9) in regards to R, is the 

“original size” of interest, i.e. R0. 
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Hence 

0new0 RR  ,             (A-11)    

 

or the same 


 0

new0

R
R   (c.q.f.d.) .                                (A-12)          

                             

This ends the demonstration of Theorem A-1. 

 

Though this proof is rigorous, we still happened to attract conservative reactions. For 

this reason, below, we present a cross check of the latter demonstration. To simplify 

an otherwise heavy notation, for the present purpose, we shall consider just the 

hydrogen atom’s Schrodinger description, thus in spherical symmerty, yet without any 

loss of generality regarding the validity of our cross check exercise. 

 

Cross Check of the Second Part of Theorem A-1 

  

The size 
0R  in question, can be described first, by expressing the wave function in 

question, )r( 00 , out of the Schrodinger Equation, and then deriving )r( 00  with 

respect to 0r , i.e. the polar coordinate. Note that we should in fact look for 
0R  which 

makes 
00

2

0 r/)r(   vanish; but [since, ordinarily 0)r( 00  ], this is the same as 
0R  

which makes 
000 r/)r(   vanish.  

 

Thus with the familiar notation (M0 being the reduced mass of the proton and the 

electron): 
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thus 
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This is the equation which will yields R0. 
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In order to assess how R0 will be affected when M0 is multiplied by  , we can 

consider Eq.(A-14), where we shall accordingly replace E0 by E0, and  )r( 00  by 

)r( 0 :  
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Using Eqs. (A-4), (A-5), (A-6) and (A-7), this can be rearranged to yield 
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Let us divide this by 4 , and use Eq.(A-4) : 
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Through a comparison with Eq.(A-13), it becomes clear that the value r, or [according 

to Eq.(A-4)], 0r  which satisfies this equation should be the (previous) R0. Let us call 

R0new, the corresponding new value of r0. Thus: 

 

0new0 RR               (A-11) 

or the same 


 0

new0

R
R   (c.q.f.d.) .                                                      (A-12) 

 

This ends the cross check of the demonstration of the second part of Theorem A-1. 

Note again that for the purpose of this cross check we adopted the simple Schrodinger 

frame, but just to simplify the rather heavy notation. Otherwise Eq.(A-18) is valid for 

any “real” quantum mechanical frame, as complicasted as this may be, and in fact, 

that is what we have achieved above, through a rigorous and elegant way to prove the 

second part of Theorem A-1. 

 

Thus we would like to emphasize that Theorem A-1 holds no matter how complicated 

the wave-like object is. Thence the vector 

 

            [(mi0, i = 1,...,I), (mj0, j= 1,…, J), E0, R 0], 

 

composed of the original electron massses mi0, i = 1,...,I, the original nuclei masses 

(mj0, j= 1,…, J), the original eigenfunction E0, and the original size R0, associated 

with the wave-like object, belongs to the set of vectors  

 

            [( mi0, i = 1,...,I), ( mj0, j= 1,…, J), E0, R 0 /  ],  .  
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Therefore it should be stressed that the total energy expansion and the size 

compression occur conjointly, regarding the mass tranformation in question.  

 

Note that our derivation holds, if various potential energies to be input in the 

Schrödinger Equation involve spatial dependencies propotional to the inverse of the 

respective distances between the interacting electric charges. In addition, if any of 

these potential energies were to bear the form (zj0zj’0)e
2
/ n

0'jjr  (in regards to the charges 

zj0e and zj’0e, at a distance rjj’ from each other), the derivation we achieved, would not 

hold, unless n=1. [It is clear that, otherwise, we could not obtain Eq.(A-9), for 

(zj0zj’0)e
2
/

n

0'jjr  in this equation, could not be transformed into zj0zj’0e
2
/ 'jjr , through the 

rearrangement in question.] Note further that the foregoing derivation would not 

either hold through a (relativistic) Dirac description, if this does not involve potential 

energies in the form zj0zj’0e
2
/ 0'jjr , for the atomistic or molecular wave-like object in 

consideration.  

 

We would like to emphasize that, the condition n=1, is imposed by the special theory 

of relativity; thus a potential energy not bearing this form (whether in a non-

relativistic wave-like description, or even in a Dirac relativistic wave-like 

description), is a violation of the special theory of relativity,
1, 2, 3

 such a violation 

would further deteriorate the results we presented herein.  

 

A-2. THE INVARIANCE OF THE QUANTITY (TOTAL ENERGY) x 

(CLOCK MASS) x (SİZE)
2
 IN REGARDS TO THE CHANGE IN MASS 

 

We define the “clock mass”, as a mass to be associated with the internal dynamics of 

the wave-like object in hand. Thus it is the “clock mass” which does the “clock 

labour” depicted by the internal dynamics of concern (cf. the text). Below M0 will 

represent the clock mass. 

 

Via Theorem A-1, through the transformation ]M[M 00  , the quantity 
2

000ME R , 

becomes ]][M][E[ 22

000  /R , hence remains invariant.  

Therefore, we establish at once, our next theorem. 

 

Theorem A-2: In a real wave-like description, in regards to the transformation 

[M M ]0   0 , the product 
2

000ME R  remains invariant.    

  

Note once again that, this theorem would not hold, if the right potentials were not 

used in our original description, i.e. Eq.(A-1).  

 

Actually, under the overall mass transformation we have considered (through a 

“real” quantum mechanical description), we have to note that the invariance of (total 

energy x mass x length
2
) holds for any mass m0, also for any piece of length r0, the 

object involves.  
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Furthermore it is interesting to note that, the quantum mechanical invariance of the 

quantity (total energy x mass x length
2
) (based on an overall mass change, as we 

conisdered, in the already non-relativistic quantum mechanical description), further 

happens to be an invariance, depicted by the special theory of relativity.  

Fundamentally, it is this latter finding which, constituted the start point of our entire 

work. Our finding evokes that in order to be compatible with the “special theory of 

relativity”, also with the “general theory of relativity”; “mass”, “space” (i.e. size) 

and “time” (i.e. period of time), or “energy”, to be associated with the internal 

dynamics of a given entity, must be structured through just a “given way of 

interrelation” with each other, i.e. the frame displayed by the invariance stated in 

Theorem A-2.  

 

Thus, amongst all the possible E0m0r0
2
’s we can compose, based on different masses 

m0 and different pieces of length r0 the object depicts, obviously 2

000ME R  too 

remains, both quantum mechanically (regarding the overall mass change we 

considered), and relativistically (regarding a uniform translational motion), invariant.  

 

This seems to bear a profound meaning, given that 2

000ME R  constitutes a very 

particular composition.  

 

Indeed, it is true that any quantity (energy x mass x length
2
) manufactured out of any 

given mass, any wall clock of given energy, and any stick meter put together, (when 

brought to a uniform translational motion) relativistically remains invariant, and this 

does not of course induce any given interrelation regarding the three totally 

independent quantities in question. It should not however  be the same, if these three 

quantites are somewhat interrelated, to display quantum mechanically, the same 

invariance (based on an overall mass perturbation); all the more, 
2

000ME R  is nailed 

to the universal constant h
2
, for all simple systems (such as the hydrogen atom, 

diatomic molecule in rotation, alpha disintegrating nucleus) we know of. 

 

Henceforth for any wave-like object, we expect the quantity 
2

000ME R  (made of the 

total energy of the object, a particular mass M0, i.e. its clock mass corresponding to 

the motion of concern of the wave-like object in hand, and a pariticular size R0, i.e 

the characteristic size of space the motion in question is displayed), to be girdled to 

h
2
.   

 

Below we elaborate on our claim. 

 

 

Note again that, we did not arrive to this result, through a dimension analysis; 

moreover, let us precise that our conclusion would not hold if the potential energy 

term the wave-like description embodies, were not made of Coulomb potential 

energies. 
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A-3. DE BROGLIE RELATIONSHIP FOR A COMPLEX SYSTEM AND THE 

VALUE OF THE INVARIANCE 
2

000ME R  

 

One way of evaluating the value of 2

000ME R , is to determine E0 out of its kinetic and 

potential components, based on an “appropriate de Broglie relationship” that we 

shall introduce, and the Virial  Theorem.
27, 28

  

 

De Broglie in 1924, in his doctorate thesis
29

, applied his relationship (relating the 

wave length 0  of the particle of concern, to its momentum m0v0), i.e.  

00

0
vm

h
  ,                                                       (A-19) 

to the stationary electron revolving around the proton, for which then, 0  is 

considerd to be 0r2 , r0 being the radius of the orbit. This, beautifully yields the Bohr 

Postulate
30

, stated earlier in 1913, for the hydrogen atom’s ground state:
 
 

 

hvmr2 000  .             (A-20)   

     

This further, taking the square of both sides and rearrenging the outcome, allows us to 

calculate the electron’s kinetic energy, K0:  

   
2

00

2

2

0
rm8

h
K


 .            (A-21) 

 

On the other hand the potential energy U0, of the electron, achieving its motion in a 

Coulombian field via the de Broglie relationship [i.e. Eq.(A-19)], can be calculated to 

be 

2

00

2

2

0
rm4

h
U


 .                                                             (A-22) 

 

Note that one could not obtain this result, if the attraction force between the electron 

and the proton did not behave as, exactly 
2

0r/1 .   

 

This makes that the total energy E0  of the hydrogen atom electron, comes to be 

 

2

00

2

2

0
rm8

h
E


  .            (A-23) 

 

The above frame, and chiefly Eq.(A-20), constitutes a unique application of the de 

Broglie relationship, beyond its being a general particle-wave duality basis regarding 

a particle exhibiting a free translational motion. 

  

Actually, almost after fifty years he wrote his thesis, de Broglie in 1973, complained 

that quantum mechanics did not really grow in conformity with his original ideas, 

although he does not state how it should have grown.
31
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Nevertheless we believe, there is a bearing in de Broglie worries. That is, the basic 

philosophy through which de Broglie has applied his relationship to the hydrogen 

atom [Eq.(A-20)], is almost forgatten.  

 

This latter application however can be followed to land at our original idea, i.e. 

shortly speaking, “mass”, “space” and “time” or “energy” ought to be structured in 

just a given manner in any atomistic and molecular wave-like object, just in 

accordance with the cast of Eq.(A-23), particularly owing to the Coulombian type of 

interactions displayed by the electric charges of the object of concern.  

Thence, we believe that, if quantum mechanics is ill grown, or did not allow any 

deeper grasp of a huge collection of molecular data (unveiling practically not much), 

this is because, there had been actually no de Broglie relationship written for a 

complex object, undergonig a given motion. 

 

Having given deep thoughts to the subject, henceforth, we conjecture the following de 

Broglie relationship for the complex wave-like object in consideration, of total energy 

E0, and clock mass M0, doing a stationary clock labour moved with an average 

velocity v0, in a space of characteristic size R0: 

 

00B

0
vMg

2/h 
R  ,                                                  (A-24) 

 

where Bg  is a relativistically invariant and dimensionless constant, usually not far 

from unity, which we propose to work out separately;
 2, 32

 note particularly that Bg  

turns to be exactly unity, within the frame of the wave-like description of the 

hydrogen atom.  

 

Herein we suppose that the object in question undertakes only one motion, so that we 

do not have to deal with a superposition of motions, such as for instance a “rotation 

plus, a “vibration”. We will soon elabourate on the case in which one has a 

superposition of motions. 

 

Thus, Eq.(A-24) allows us to evaluate the average kinetic energy K0 of the wave-like 

object  displaying the internal dynamics of concern, just the way we did above, for the 

electron of the hydrogen atom:  

   
2

00

2

B

2

2

0
Mg8

h
K

R
 .            (A-25) 

 

Thus the average  kinetic energy of  the wave-like object in hand, comes to be 

proportional to h
2
/ 2

00M R . 

 

On the other hand, its average potential energy (provided that it is made of 

Coulombian potential energies), according to Virial Theorem, is the double of its 

kinetic energy
4,5

,  i.e.  

   
2

00

2

B

2

2

0
Mg4

h
U

R
 ;           (A-26)
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thus this too, is proportional to h
2
/ 2

00M R . 

 

Note that here the use of the Virial Theorem does not interfere at all with the mass 

transformation we have considered above. 

 

Both the kinetic energy and the potential energy of the wave-like object in hand, 

being proportional to h
2
/ 2

00M R , its total energy must also be proportional to 

h
2
/ 2

00M R ; or the same, 2

000ME R  is proportional to h
2
; more specifically, the total 

energy E0 becomes 

   
2

00

2

B

2

2

0
Mg8

h
E

R
   .           (A-27) 

 

This draws the following theorem. 

 

Theorem A-3:  In a real atomistic or molecular wave-like description, the quantity 
2

000ME R  is proportional to h
2
.  

   

Henceforth 2

000ME R  is not only an invariant regarding an overall mass perturbation 

within the frame of the quantum mechanical description of a “real” object, but is 

further strapped to h
2
; this is deep, since 2

000ME R  is relativistically invariant too. Let 

us stress that we could not derive Eq.(A-27), if the potential energy depicted by the 

object were not made of Coulomb Potentials.  

 

It should still be recalled that Eq.(A-27), thus Theorem A-3, is equivalent to 

associating (on the contrary to the general wisdom) a simple de Broglie relationship 

with the wave-like object in hand (as complex as this may be). The fact that we do not 

know Bg  beforehand, may though seem not to advance us much. As we show, this is 

fortunately not the case.  

 

Indeed Bg  appears to be solely dependent on the electronic configuration of the 

object in hand. Thus consider for example the H2  molecule. We shall thus expect Bg  

to stay practically the same for the excited electronic levels of H2 bearing electronic 

configurations similar to that of the ground state of H2. We elabourate on this 

elsewhere. 
33

   

 

Nonetheless mathematically speaking, Eq.(A-27) constitutes a definition of Bg . Via 

the usual weighting and integration of Eq.(A-1) over the appropriate space domain, 

and the Virial Theorem, note further that, we land at an equation which is formally 

equivalent to Eq.(A-27):   

   

         0E = dV)r(
mm

)r(
8

h
00
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         .                                                                                                     

which yields a better hint about Bg . 
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In the case of the electronic description of a diatomic molecule, for instance [cf. 

Eq.(5) of the text], the expression about 2

Bg  reduces to 

 

                

dV)r()r(

1
g

0e
space

i

2

i0e

2

0

2

B













 R

 ;      (A-28) 

 

here the subscript “i” refers to the i
th

 electron; recall that )r( 0e  is the wave function 

associated with the electronic motion of the molecule in consideration, and R0 is the 

characteristic length, i.e. the average internuclear distance for a diatomic molecule. 

 

A-4. DISCUSSION 

  

Theorem A-1 is well known on the basis of hydrogen atom. (In fact this is not really 

an overall mass change one considers, regarding the hydrogen atom framework, but 

the change of the nucleus proton number.) Yet presumably, because there was no 

apparent reason, it was not considered on a general basis.  

 

Multiplying all of the masses, the object in hand embodies, does not indeed seem to 

mean much at a first glance. However, not only that this exercise led us to a useful 

relationship (i.e. 22

000 h~RME ), but also the object, interestingly, undergoes such a 

mass transformation were it brought to a uniform translational motion, or were it 

embedded in a gravitational field, or in fact just in any field it eventually interacts 

with.      

 

The relationship we ended up with (Theorem A-3, i.e. the Universal Matter 

Architecture Cast, shaping, the “total energy”, the “size”, and the “masses” to be 

associated with the wave-like object in hand, in relation with each other, through h
2
 ), 

appears to be straightforward on the basis of non-relativistic or even relativistic wave-

like descriptions of simple configurations, such as “electron in the box”, “hydrogen 

atom”, and the “nucleus”  regarding “alpha disintegration”, etc. Our approach shows  

however that the UMA cast ought to hold, for any “real” quantum mechanical 

description (thus, embodying only Coulomb potential energy terms), as cumbersome 

as this may be. We believe the significance of this cast, as simple as it may look, has 

been overlooked, up to our approach.  

 

Our result may still seem somewhat obvious, since one may think he can quickly 

establish the UMA Cast (Theorem A-3), via a dimension analysis. Yet one must keep 

in mind that (either through a non-relativistic approach or even through a relativistic 

approach, it would not matter), the UMA cast would not occur, if the object 

considered is not a “real” one, though of course, there would still be no problem 

dimension-wise.  

Here is a good example which at a first approach shows no feature at all about the 

UMA Cast: the familiar expression about the vibrational period of a diatomic 

molecule, i.e. 

 
0

0

0
k

2T
M

 ,                  (A-29) 
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with T0 the inverse of the fundamental vibration frequency 0 , M 0  the reduced mass 

of the vibrating molecules, and k0 the vibration force constant.  

 

Obviously, E0 and T0 are related to each other [cf. Eqs.(A-25) and (A-27)]; thus 

Theorem A-3 should apply for 1

0T 
  replacing E0, and accordingly h, replacing h

2
. 

After all, Theorem A-3, yields [Eq.17) of the text]
 
   

 

 T0 = 

hnn

4

21

2
e0mgM

2

0R ;             (A-30) 

 

here me is the mass of the electron, g a constant related to the electronic configuration 

of the molecule, thus to Bg [cf. Eq.(A-28)]; n1 and n2 are principal quantum numbers 

of electrons making up the bond(s) of the diatomic molecule in hand, and R0 the 

ground state internuclear distance. We have to keep in mind though due to quantum 

defects, n1 and n2 are not integers. We have in effect figured out that the composite 

quantum number 21nn  is merely  0RR , for an excited state, where the internnuclear 

distance, is R., provided that the two states are configured  

 

We would like to note that Eq.(A-30), utimately turns out to be a relationship 

equivalent to Bohr’s postulate, i.e. Eq.(A-20) or more fundamentally, a relationship 

equivalent to Eq.(A-19), the de Broglie relationship, to be associated with the 

diatomic molecule of concern, i.e. Eq.(A-24). 

 

It took us, already on the basis of H2
+
 molecule, a whole work to show especially that, 

Eq.(A-29) can indeed be formulated in harmony with the UMA Cast
2
 (and this, before 

we could generalize it for the entire body of diatomic molecules).  

 

Thence, it is not obvious at all that, any wave-like object should be structured in 

accordance with the UMA Cast we disclose.  

 

Note that as seen, the clock mass M0, we referred to, becomes 
e0e m/m M  for the 

vibrational motion of a diatomic molecule. 

 

Generalization of the UMA Cast for an Object Bearing  

More than one Motion  

 

Here is another example not clearly disclosing the UMA Cast, which will allow us to 

generalize it for more than one motion the wave-like object may display; this is the 

expression of the total energy E0 embodying the vibrational motion together with the 

rotational motion, displayed by a diatomic molecule, i.e.  

 

 

RotationVibration0 EEE  ,             (A-31) 

 

or (with the definitions given above) 
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where as usual, v is the vibrational quantum number, and J the rotational quantum 

number.
34

 

 

The only term which appears to match openly with the UMA Cast, is the second term 

in the RHS of Eq.(A-32), and this, if we neglect the third one; then indeed 

 

  
2

2
2

00Rotation
8

h
)1J(JRE


M   .            (A-33) 

 

Note however that the first term [in the RHS of Eq.(A-32)], can be rewritten, with the 

use of Eq.(A-30) as  

  
2

2
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2

0e0Vibration
4

h
nn)

2

1
v(mgE


RM   .          (A-34) 

 

Thus now this too, agrees well with our Theorem A-3. 

 

Furthermore, we can use Eq.(A-30) once again, to transform the third term of the 

RHS of Eq.(A-32), i.e. 
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With this, we can work out the rotational energy [cf. Eq.(A-32)], and check whether it 

matches with the UMA Cast. It luckily does:  
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or, indeed 
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Therefore this too, comes to approve our Theorem A-3. Note that the second term in 

the bracket is quite negligible as compared to 1, due to the very small value of the 

ratio  me /M0 (the electron mass divided by the nuclei reduced mass). 

 

The above derivation, while disclosing the UMA Cast, further allows us to 

immediately generalize it, in the case where we have a superposition of K different 

(clock) motions, each of energy E0i, displayed by the same wave-like clock of grand 

total energy, E0(Grand Total). We call the outcome TheoremA- 4.    
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Theorem A-4:  If 
)TotalGround(0

E  is composed of k components, so that  

 

                          



K

1k

k0)TotalGrand(0 EE  ,             (A-38)          

  

  then each component 0E  can be expressed as   

                          
2

k0k0

2

kk0
RM

h
pE  ;             (A-39)         

therefore  

                          



K

1k
2

k0k0

2

k)TotalGrand(0
M

h
pE

R
 .                    (A-40) 

 

Here M0k is the clock mass, R0k the clock size, and pi the appropriate proportionality 

constant (including basically a geometry factor and a rather complex quantum 

number) to be associated with the k
th

 motion of the wave-like object in hand. 

 

Thus Theorem A-4 in short states that, the previous Theorem A-3 holds separately for 

each motion, the internal dynamic of the object, may involve. 

 

The Relationship 
2

21

2

e

2

B

2 hnnErmg8   holds well Regarding the Excited   

Electronic Levels (E) and the Corresponding Internuclear Distances (r)  

in a Diatomic Molecule, Particularly in H2 Molecule 
35

 

 

The only basic energy type we have not specified in this appendix is the “electronic 

energy”. Thus we should underline an immediate conclusion of Theorem A-4, in the 

case of a diatomic molecule, particularly, on the basis of the Bohr & Oppenheimer 

approximation. According to this, as summarized in the text, the descriptions 

regarding the electronic motion of the bond on the one hand, and the nuclei 

vibrational motion on the other hand, can be fairly separated from each other.  

 

The resulting Schrödinger equation about the description regarding the electronic 

motion embodies, only the electron mass; furthermore the overall potential energy 

input to this equation is made of just Coulomb potential energy terms, which makes 

that this description is a “real” one [which is our condition in regards to the validity 

of Theorem A-3 or Eq.(A-27)]. 

 

Thus Eq.(A-27), for the electronic motion of the bond in consideration, becomes  
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2 hnnErmg8  .             (A-41) 

 

Here em  is the electron mass (here playing the role of the “characteristic mass”). E is 

the electronic energy of the molecule in hand, at the given state, and r the internuclear 

distance of the molecule at this state. 1n  and 2n  (as explained in the text) are the 

principal quantum numbers to be associated with the bond electrons; more 

specifically, essentially based on Theorem A-1, 021 r/rnn   (cf. Theorem 6 of the 

text). 
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Note that 2

Bg  of Eq.(A-41), corresponding to what we called INg  at the level of 

Eq.(10) of the text. 

 

E is negative. But to simplify our notation, below we will call E, the magnitude of the 

electronic energy of concern. 

 

 E (as a positive quantity) is usually given as  

 

  e0 TEE   ,             (A-42)                  

    

where E0 is the magnitude of the ground state electronic energy of the molecule, and 

eT  a tabulated quantity. 

 

Eq.(A-42) together with Theorem A-4 becomes  
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For electronic states configured like the ground state, we expect the coefficient Bg  to 

remain practically the same. 

 

Thence the plot of Te for the states, configured similarly, versus 1/r, should come out 

as a decreasing straight line. The intersection of this with the Te axis, shall furnish E0, 

the ground state electronic energy, and the slope in question shall furnish the 

coefficient 
Bg . 

 

Note that Eq.(A-43) is valid for any diatomic molecule. We checked its suitability 

elsewhere, on the basis of H2, the only molecule providing us with the sufficient 

amount of data.  

 

Recall further that, Eq.(A-39) can be well written, through a heuristic approach based 

on the Heisenberg uncertainty principle, and the Virial Theorem, yet deveiling not 

much for the rest.  

 

Disclosure of the Aged Empirical Relationship,  2R  Constant 

 

We would like to recall a final example we undertook in the text [cf. Eq.(18)] which, 

on the contrary to the previous examples, matches in an evident manner with the 

UMA Cast, but amazingly not notified as such, i.e. 

 

 2R  Constant,                          (A-44) 

 

an approximate empirical relationship between the (lowest) vibrational frequency   

and the internuclear distance R , established back in 1925, for a given diatomic 

molecule’s electronic states;
8
 with indeed no successful explanation up to now, the 

constant is to be determined (empirically) for the molecule of interest.  
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Interestingly enough Eq.(A-44) though, can immediately be deduced from Eq.(A-30) 

[Eq.(17) of the text]. Thence the mysterious constant of 1925, becomes  

 

Constant 
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nnh
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  ;                                                         (A-45)  

 

According to our Theorem A-4, 21nn  stays indeed about the same, in regards to the  

electronic states for which the internuclear distance is not far from 
0R  the internuclear 

distance at the ground state. 

 

Thence through the UMA Cast, we draw a whole new systematization of diatomic 

molecules, and this, in a totally different manner than that we followed in        

Reference 3. 

 

This should remind us that the UMA Cast, overall, had in effect been no more visible 

than the empirical finding,  2R Constant is, which again, was left unveiled since 

1925. [Note that it turned out to be even harder to identify the RHS of Eq.(A-32) as an 

UMA Cast.]  So, one better not consider it, as trivial as he may think, it now seems. 

 

We should vitally recall that the UMA Cast we disclose is indeed invariant through 

the occurrences dealt with both the “special theory of relativity”, and the “general 

theory of relativity”. That is in fact how originally we arrived at it;
1,2,3,4,5

 we 

elaborated on the proposition that, it is this cast that works as the internal machinery 

of the occurrences one observes through the framework of these two fundamental 

theories, and even more.
 

 

ACKNOWLEDGEMENT  

 

The author would like to thank to Dear Friend Dr. R. Tokay, who we recently lost, to 

Professor V. Rozanov, Member of Academy of Sciences, Federation of Russia, to 

Professor N. Veziroğlu, Director of the Clean Energy Resaerch Institute of the 

University of Miami, to Dr. C. Marchal, Research Director, ONERA, France, to Dr. 

O. Sinanoğlu, Prof.essor at Yale, USA, to Dr. M. İdemen, Dr. E Hasanov, Dr. N. 

Kıyak, Dr. K. Akgüngör, Faculty Members at Işık University, to Dr. Ş. Koçak, 

Professor at Anadolu University, also to his Dear Brothers Dr. F. A Yarman and Dr. 

S. Yarman, for very many hours of discussions, which helped a lot to improve the 

work presented herein. Thanks are further due to Mrs. E. Altuğ, Director of the 

Library of IU, and to Miss S. Aytaç and Mr. G. Eriş, Librarians, who provided rapidly 

all the very many documents we requested toward the achievement of this work, also 

to Dear Student Fatih Özaydın, who has kindly helped typing the manuscript and 

drawn the figures. 

 

 

 

 

 

 



 

 
 

45 

 

 

 

 

 

 

 

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

H
2

Na
2

NaK
K

2

KRb

Rb
2

RbCs

Cs
2

Li
2

LiNa

T
0
 x10

3
c (cm)

M
0

1/2
 r

0

2
 (amu

1/2
 A

2
)

Figure 1  Period of alkali molecules versus M
0

1/2 
r

0

2

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

46 

 

 

 

 

 

 

 

 

0 10 20 30 40 50 60

0

1

2

3

4

5

O
2

SO

S
2

Se
2

Te
2

T
0
 (x10

3
c) (cm)

M
0

1/2
 r

0

2
 (amu

1/2
 A

2
)

Figure 2  Period of (O
2
, S

2
, Se

2
, Te

2
) versus M

0

1/2
r

0

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

47 

 
 
 
 
 
 
 
 

0 2 4 6 8 10 12 14 16

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

N
2

PN

P
2

T
0
 (x10

4
c) (cm)

M
0

1/2
 r

0

2
 (amu

1/2
 A

2
)

Figure 3  Period of (N
2
, PN, P

2 
) versus M

0

1/2

 
r

0

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

48 

 
 
 
 
 
 
 
 

0 10 20 30 40 50 60

0

10

20

30

40

50

F
2

ClF
BrF Cl

2

Br
2

ICl

I
2T

0
 (x10

4
c) (cm)

M
0

1/2 
r

0

2
 (amu

1/2
 A

2
)

Figure 4  Period of diatomic molecules, made of combinations of

                halogen atoms, versus M
0

1/2 
r

0

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

49 

 
 
 
 
 
 

0 10 20 30 40 50 60

0

10

20

30

40

50

KF

NaCl

NaBr

KCl RbCl

KI
KBr

NaI

T
0
 (x10

4
c) (cm)

M
0

1/2
 r

0

2
 (amu

1/2
 A

2
)

Figure 5  Period of different alkali-halogen molecules versus M
0

1/2
 r

0

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

50 

 
 
 
 
 
 
 

0 20 40 60 80

0

20

40

60

80

BCl
BBr

AlCl

InCl

AlBr

InI

TlCl

TlBr

TlI

T
0
 (x10

4
c) (cm)

BF

M
0

1/2
 r

0

2
 (amu

1/2
 A

2
)

Figure 6  Period of diatomic molecules, made of atoms
                belonging to respectively the 3th and 7th co-

                lumns of the periodic table, versus M
0

1/2 
r

0

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

51 

 
 
 
 
 
 
 

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

CO

CS
SiO

GeO SnO

SiS

PbO

SnS
PbS

T
0
 (x10

4
c) (cm)

M
0

1/2
 r

0

2
 (amu

1/2
 A

2
)

Figure 7  Period of diatomic molecules, made of atoms
                belonging to respectively the 4th and 6th co-

                lumns of the periodic table, versus M
0

1/2 
r

0

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

52 

 
 
 
 
 
 
 
 
 

0 2 4 6 8 10 12 14

0,0

0,2

0,4

0,6

0,8

1,0

1,2

r
0

3
 (A

3
)

T
0

2
 (x10

6
) (cm

2)

H
2

+

H
2

Figure 8   [Vibrational Period]
2
 versus [Internuclear Distance]

3
 

                 for Different Electronic States of H
2
 molecule 

                 (The states corresponding to experimental data off the 
                  straight line have been identified to be configured like
                  the ground states of respectively, alkali hydrides and Li

2
) 

    

 
 
 
 
 
 
 
 
 



 

 
 

53 

 
 
 
 
 
 
 
 
 
 
 

0 20 40 60 80 100

0

5

10

15

20

25

30

(M
0
 r

0

3
)

1/2 
(amu A

3
)

1/2

H
2

Na2

NaK

K2

KRb

Rb
2

RbCs

Cs
2

Li
2

LiNa

T
0
 x10

3
c (cm)

Figure 9  Period of alkali molecules versus (M
0
 r

0

3
)

1/2 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

54 

 
 
 
 
 
 
 
 
 
 
 

0 5 10 15 20 25 30 35

0

1

2

3

4

5

O
2

SO

S
2

Se2

Te
2

(M
0 

r
0

3
)

1/2
 (amu A

3
)

1/2

T
0
 (x10

3
c) (cm)

Figure 10  Period of (O
2
, S

2
, Se

2
, Te

2
) versus (M

0
r

0

3
)

1/2

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

55 

 
 
 
 
 
 
 
 
 
 

0 2 4 6 8 10 12

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

N
2

PN

P
2

(M
0 

r
0

3
)

1/2
 (amu A

3
)

1/2

T
0
 (x10

4
c) (cm)

Figure 11  Period of (N
2
, PN, P

2 
) versus (M

0 
r

0

3
)

1/2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

56 

 
 
 
 
 
 
 
 
 

0 10 20 30 40

0

10

20

30

40

50

F
2

ClF

BrF

Cl
2

Br
2

ICl

I
2

(M
0 

r
0

3
)

1/2
 (amu A

3
)

1/2

T
0
 (x10

4
c) (cm)

Figure 12  Period of diatomic molecules, made of combinations of

                  halogen atoms, versus (M
0 

r
0

3
)

1/2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

57 

 
 
 
 
 
 
 
 
 
 

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

KF

NaCl

NaBr

KCl RbCl

KIKBr

NaI

(M
0 

r
0

3
)

1/2
 (amu A

3
)

1/2

T
0
 (x10

4
c) (cm)

Figure 13  Period of different alkali-halogen molecules versus (M
0 

r
0

3
)

1/2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

58 

 
 
 
 
 
 
 
 
 
 
 

0 10 20 30 40 50

0

20

40

60

80

BF

BCl

BBr

AlCl

InCl

AlBr

InI

TlCl

TlBr

TlI

(M
0 

r
0

3
)

1/2
 (amu A

3
)

1/2

T
0
 (x10

4
c) (cm)

Figure 14  Period of diatomic molecules, made of atoms belonging to
                  respectively the 3th and 7th columns of the periodic table, 

                  versus (M
0 

r
0

3
)

1/2

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

59 

 
 
 
 
 
 
 
 
 
 
 

0 5 10 15 20 25

0

5

10

15

20

25

30

CO

CS
SiO GeO

SnO

SiS

PbO

SnS
PbS

(M
0 

r
0

3
)

1/2
 (amu A

3
)

1/2

T
0
 (x10

4
c) (cm)

Figure 15  Period of diatomic molecules, made of atoms
                  belonging to respectively the 4th and 6th co-

                  lumns of the periodic table, versus (M
0 

r
0

3
)

1/2

 
 

 

 

 

 

 

 

 

 

 



 

 
 

60 

 

 

 

 

 

 

REFERENCES  

                                            
1
  T. Yarman, F.A.Yarman, DOGA - Turkish Journal of Physics, Scientific and 

Technical Research Council of Turkey, Volume 16 (Supplement), 596-612, 1992. 

 
2
   T.Yarman, DOGA - Turkish Journal of Physics, Scientific and Technical Research 

Council of Turkey, 16, 552-560, 1992.  

 
3
   T. Yarman,  A Novel Systematic of Diatomic Molecules Via the Special Theory of 

Relativity, Chimica Acta Turcica, Vol 26, No 3, 1999. 

 
4
   T. Yarman, Invariances Based on Mass And Charge Variation, Manufactured by 

Wave Mechanics, Making up The Rules of Universal Matter Architecture,  

    Chimica Acta Turcica, Vol 27, 1999.   

 
5
   T. Yarman, A Novel Approach to The End Results of the General Theory of 

Relativity and to Bound Muon Decay Rate Retardation, DAMOP 2001 Meeting, 

APS, May 16 -19, 2001, London, Ontario, Canada. 

 
6
  T. Yarman, How Do Electric Charges Fix, the Architecture of Diatomic 

Molecules?, DAMOP 2002, American Physical Society, May 28 – June 1, 

Williamsburg, Virginia, USA. 

 
7
   T. Yarman, The General Equation of Motion Via The Special Theory of Relativity 

And Quantum Mechanics – Part 1: A New Approach To Newton’s Equation of 

Motion, APS Meeting, April 5-8, Philadelphia, USA. 

 
8
  T. Yarman, The General Equation of Motion Via The Special Theory of Relativity 

And Quantum Mechanics – Part 2: Check Against The Basic Predictions, of The 

General Theory Of Relativity, APS Meeting, April 5-8, Philadelphia, USA. 

 
9
    Born and Oppenheimer, Ann. Physik, 84, 457 (1927). 

 
10

  Birge, Physic Rev. 25, 240, 1925. 

 
11

  R. Mecke, Z. Physics 32, 1925. 

 
12

  P. M. Morse, Physic. Rev. 34, 57, 1929. 

 
13

  Clark, Physic. Rev. 47, 238, 1935. 

 
14

  G. Herzberg, Molecular Spectra and Molecular Structure, D.Van Nostrand  

     Company, Inc, 1964. 

 



 

 
 

61 

                                                                                                                             
15

  V. Spirko, O. Bludsky, F. Jenc, B.A. Brandt, Estimation of the ground-state 

potentials of alkali-metaal diatomic molecules with the use of the multiparameter 

generalized reduced-potential-curve method, Physical Review A, (1993). 

 
16

  U. Diemer, H. Weickenmeier, M.Wahl, W. Demtröder, Sub-dopler Spectroscopic 

of the NaCs Molecule, Chemical Physics Letters, 104-5, (1984). 
 
17

  N. Zaim, An Approach to The Systematization of Diatomic and Triatomic 

Molecules, Ph.D. Thesis (supervised by T. Yarman), Trakya University (Turkey), 

August 2000. 
 
18

  S. Bratoz, R. Daudel, M. Roux, M. Allavena, Review of Molecular Physics, 32, 

412 (1960). 
 
19

  Bratoz, G. Bessis, Journal of Chemical Physics, 56, 1042 (1959). 
 
20

  L. Salem, Journal of Chemical Pyhsics, 38, 1227 (1963). 
 
21

  K. Ohwada, Prediction of Heteronuclear Diatomic Force Constants From Atomic 

Shielding Factors, Journal of Chemical Physics, 75 (3), 1981. 

 
22

  L. von Szentpaly, Valence States in Molecules, Transferable Vibrational Force 

Constants From Homonuclear Data, Journal of Physical Chemistry, A 1998, 102, 

10912-10915.          
23

  Schrodinger, Ann. Physik, 79, 361, 489, 734; 80, 437: 81, 109, 1926. 

 
24

  Dirac, Proc. Roya. Soc., A117, 610; A118, 351, 1928. 

 
25

  Heisenberg, Z. Physik, 33, 879, 1925.   

 
26

  Born, Heisenberg, Jordan, Z. Physik, 35, 557, 1926. 

 
27

   J. C. Slater, J. Chem. Phys., 1, 687 (1933). 

 
28

   M. Born, W. Heisenberg, P. Jordan, Z. Physik, 35, 557 (1925, 1926). 

 
29

   L. de Broglie, Recherches Sur La Théorie Des Quanta, Annales de Physique,   

     1925. 

 
30

   N. Bohr, Phil. Mag., 26, 1, 1913. 

 
31

  L. de Broglie, Physique Theorique. - Sur Les Véritables Idées de Base de La               

     Méchanique Quantique, Speech, C. R. Acad. Sc. Paris, t. 277 (July 16, 1973). 

 
32

 T. Yarman, A New Approach to the Architecture of Diatomic Molecules,  DAMOP 

2001  Meeting, APS, May 16 -19, 2001, London, Ontario, Canada. 

 



 

 
 

62 

                                                                                                                             
33

  T. Yarman, Elucidation of the Empirical Relationship 2

00R =Constant, and the 

Irregular Data of H2 Vibrational Electronic States, 6
th

 European Conference on 

Atomic and Molecular Physics, ECAMP VII, 2-6 April 2001, Berlin. 

 
34

  J. C. Davis, Jr., Chapter 8, Advanced Physical Chemistry, The Ronald Press 

Company, 1965. 

 
35

  T.Yarman, F. Yarman, F. Özaydın, Investigation of The Relationship Electronic 

Energy ~ 1 / (Internuclear Distance), Regarding The Vibrational Electronic States 

of Hydrogen Molecule, APS DAMOP 2003, May, USA 


